Multiple-Bond Correlations in Heteronuclear ND NMR

Analysis of J-coupling, especially $^1H-^1H$ J-couplings, both in terms of their precise values and the splitting patterns produced in 1D spectra, as well as the distinctive patterns that arise in multidimensional spectra form the basis of structural analysis using NMR.

Although direct heteronuclear couplings, $^1J_{HC}$ may be interpreted in a structural context, such correlations are fairly weak.

It was recognized early that heteronuclear couplings could provide valuable structural information in the same way that $^1H-^1H$ couplings do, and studies of compounds uniformly enriched in ^{13}C, readily reveal geminal and vicinal J_{CC}-couplings ($^1J_{CC} \approx 35$ Hz, $^2J_{CC} < 5$ Hz)

Observation of J_{CC} at the natural abundance level (1.1% ^{13}C) is complicated by the very low probability of finding adjacent ^{13}C nuclei, regardless of whether we are thinking of any of the following arrangements:

$$ ^{13}C-^{13}C-^{12}C-^{12}C $$

$$ ^{13}C-^{12}C-^{13}C-^{12}C $$

$$ ^{13}C-^{12}C-^{12}C-^{13}C $$

Nevertheless, such interactions do exist and by exploiting the production of multiple-quantum coherent states, $^1J_{CC}$, $^2J_{CC}$ and $^3J_{CC}$ couplings can be observed.

Recall that an n-quantum state can only be produced from n or more spins, thus the approach employed seeks to distinguish the two-spin ^{13}C systems from the isolated ^{13}C spins.
INADEQUATE: Incredible Natural Abundance Double Quantum Transfer Experiment

The pulse sequence for the 1D INADEQUATE experiment is shown below:

![Pulse sequence diagram](image)

The J_{CC} coupling constants for piperidine are measured to be:

$$^{1}J_{23} = 35.2 \text{ Hz}, \; ^{3}J_{23} = 1.7 \text{ Hz}, \; ^{2}J_{24} = 2.6 \text{ Hz and } ^{1}J_{34} = 33.0 \text{ Hz}$$

The delay $1/4J_{CC}$ is generally optimized for $^{1}J_{CC}$, i.e., 35 Hz, in which case the delay is set to be approximately 7 ms. Nevertheless, geminal and vicinal coupling are also observed.
The INADEQUATE experiment may also be recorded as a 2D experiment as shown below:

Figure 9-29 from the Friebolin text.
INADEQUATE data can provide key structural insights, however the method has very low relative sensitivity, i.e., \(^1H\{^{13}C\} \) NOE enhancement with direct \(^{13}C\) detection, and application of the approach requires sample concentrations above 100 mM.
HMBC: Heteronuclear Multiple-Bond Correlation Spectroscopy

The HMBC experiment is a powerful variant of the HMQC method can produce so-called multiple bond (C–C) correlations between 1H and remote heteronuclei:

$$^1\text{H}-^{13}\text{C}-^{13}\text{C}-^{12}\text{C}$$
$$^1\text{H}-^{13}\text{C}-^{12}\text{C}-^{13}\text{C}$$
$$^1\text{H}-^{13}\text{C}-^{12}\text{C}-^{12}\text{C}$$

The method provides correlation between ^{13}C separated by one- two- or three bonds with high relative sensitivity since it incorporates both polarization transfer and 1H-detection.

The interval specified by $1/2J$ represents the standard interval in the HMQC spectrum employed to produce antiphase coherence:

$$\frac{1}{2J} = \frac{1}{2(140 \text{ Hz})} \approx 0.0036 \text{ sec}$$

Recall that full antiphase coherence character is produced when the components of the 1H vector that are coupled to the α and β states of the 13C spins are 180° apart from one another.

In practice for this $1/2J$ interval may be varied between 3 ms and 5 ms depending on J_{CC} and the T_2 of the 13C spins.
The geminal, $^2J_{CC}$, and vicinal, $^3J_{CC}$, couplings are substantially smaller than the direct coupling, i.e., < 5 Hz versus 30-40 Hz.

Since the development of antiphase character develops much more slowly for these smaller couplings, the first 13C 90°-pulse has little affect on the state of the system, whereas the antiphase state for the coupled spins is converted in a multiple quantum manifold:

This difference may be exploited to eliminate signals arising from directly coupled spins using the same sort of approach that was used to eliminate uncoupled 1H signals from the HMQC experiment. In this context the technique is know as a low-pass filter since only signals from lower frequency components survive the sequence.
Figure 1 from Bax, A. and Summers, M.F. (1980) 1H and 13C Assignments from Sensitivity-Enhanced Detection of Heteronuclear Multiple-Bond Connectivity by 2D Multiple Quantum NMR. *J. Am. Chem. Soc.* 108, 2093-2094.

Figure 1. High-field region of the 500-MHz absolute value mode 1H-13C long-range correlation spectrum of a sample of 4 mg of coenzyme B$_{12}$, dissolved in 0.35 mL of D$_2$O. The measuring time was 15 h. The lowest contour level in the upper half of the spectrum (above the drawn line) has been chosen 3 times higher than for the lower half, because, at lower contour levels, t_1 noise from the intense methyl signals starts obscuring the connectivities of interest. At the top of the spectrum, the conventional 1H-decoupled 13C spectrum recorded on a JEOL GX400 spectrometer (using 50 mg of sample) is shown. Incompletely suppressed direct correlations, marked by vertical bars, are observed for the methyl groups C53, C35, B10, B11, C54, C25, C47, and Pr3. 15 Resonances that are folded in the 13C dimension are labeled "F".
gs-HMQC of strychnine at 500 MHz 1H:

gs-HMBC of strychnine at 500 MHz 1H:
3D Multinuclear experiments

3D HMQC-COSY: This experiment resolves 13C in F1, 1H in F2 and 1H in F3. The F1-F2 planes correspond to a HMQC experiment, while the F2-F3 planes correspond to a COSY experiment. The transfer pathway is given as follows:

$$H_z \rightarrow H_{xy} \rightarrow \frac{1}{2}J_{xy} \rightarrow C_{xy}[t_1] \rightarrow \frac{1}{2}J_{xy} \rightarrow H_{xy}[t_2] \rightarrow H_{xy}[t_3]$$

wherein the correlations produced post-HMQC are restricted to COSY-like transfers, i.e., geminal and vicinal 1H couplings.
3D HMQC-TOCSY: This experiment resolves ^{13}C in F1, ^1H in F2 and ^1H in F3. The F1-F2 planes correspond to a HMQC experiment, while the F2-F3 planes correspond to a COSY experiment. The generic transfer pathway is given as follows:

$$
H_z \xrightarrow{t_1/2J} H_{xy} \xrightarrow{1/2J} C_{xy} \xrightarrow{t_2/2J} H_{xy} \xrightarrow{t_3/2J} H_{xy}
$$

wherein long-range $^1\text{H}-^1\text{H}$ correlations are produced.
Pulsed Field Gradients: Theory and Application

Thus far we have considered two very distinct types of magnetic fields: The static (Zeeman) field that produces the bulk polarization and a time-dependent field, i.e., RF pulses. We now consider a magnetic field that is both temporally and spatially dependent.

We can also generate a magnetic field that may be gated, i.e., rapidly turned on and off, and which varies in strength across the sample chamber.

The object of the PFG is to install a magnetic field gradient across the sample which adds/subtracts to the main (static) field, \(B_0 \) in a coordinate-dependent fashion. During the gradient pulse spins in different locations experience different net magnetic field vectors.

The apparatus used to generate the field–gradient pulse may be diagrammed as shown below (from Barker and Freeman (1985)):
The effects of the PFG may be demonstrated using the simple pulse sequence shown below:

Field gradient pulses are characterized by intensity (flux density), duration, and shape (i.e., rectangular, sine-bell, Gaussian, etc.).

From Barker and Freeman (1985):

`...The principal attribute of the field--gradient technique is the ability to speed up experiments where the inherent sensitivity is so high that time averaging is unnecessary. However [sic], many phase-cycling schemes have now become so complicated (through the nesting of many independent cycles) that programming errors can easily arise, with dramatic losses in signal intensity. Gradient pulses seem easier to implement...'.

A dramatic statement given that the PFG apparatus in this case was ‘home-built’.

The net effect of the PFG is to make the Larmor precession frequencies position dependent. Consider:

Free-Precession

\[\omega = \gamma B_0 \]

Chemical Shift

\[\omega = \gamma (1 - \sigma) B_0 \]

PFG

\[\omega = \gamma (1 - \sigma) B_0 + \gamma (1 - \sigma) \Delta B_0 r_z \]
Since $|\sigma| \ll 1$ and $\Delta B_0r_z \approx \left(30 \text{ G cm}^{-1}\right)(1.5 \text{ cm}) \ll B_0 \approx 10^4 \text{ G}$, we may accept the approximation that $\sigma \Delta B \rightarrow 0$ and therefore that

$$\omega \approx \gamma (1 - \sigma) B_0 + \gamma \Delta B r_z$$

The effects may be diagrammed as shown below:
The PFG causes transverse magnetization at a particular position within the sample volume to rotate through an angle that depends upon the gyromagnetic ratio of the spin, the strength of the PFG (in Gauss) and the position.

The strength of the PFG is set so that for a given sample volume and duration, spins are rotated through several cycles, thus completely scrambling the magnetization over the sample volume.

Such a condition is known as a z-coil since the spin vectors are rotated in a highly consistent pattern along the z-axis.

Since for every vector in a z-coil there is a vector somewhere in the sample volume that points in the exact opposite direction, the sum of the vectors over the sample is zero. The transverse magnetization may thus be effectively eliminated by a PFG element.

Note that if we apply a PFG of a given strength for a specified interval, we can actually retrieve the original state by applying a PFG of the same strength (+) and duration but in the opposite sense (−). The second PFG will unwind the effects of the first PFG.