Decoupling

- We think of 1D 13C NMR spectra as being composed of simple single resonances (lock solvent resonance is an exception?).

- Simple singlet 13C resonances are the result of "1H decoupling".

- The goal of decoupling — say between 1H and 13C nuclei — is to disable fine-structure influences on resonance structure.

- An equally important goal is to improve the sensitivity of X-nuclei via the nuclear Overhauser enhancement.

- Both influences enhance X-nucleus detection sensitivity.
• Decoupling operation can be controlled in several ways - the most common way is to define the "decoupler mode", dm.

• In the example above, dm = 'yyy', meaning that decoupling is active during status regions A, B, C.
• For a simple 13C ID detection experiment, $\rho_1 = 0$ and $d_z = 0$, so that nothing actually is defined during status-B - nevertheless, we must formally acknowledge that status-B is defined.

• The influence of 1H decoupling on 13C spectra during status-A and status-C are very different.

• During status-A, only sensitivity-enhancement occurs.

• During status-C, only 1H decoupling occurs.

• Thus, it is possible to obtain 13C spectra:
 1) No enhancement, no decoupling
 \[\Delta m = 'nnn' \]
2) No enhancement, with decoupling
 \[d_m = \text{'nnn'} \]

3) Sensitivity enhancement, no decoupling
 \[d_m = \text{'yyn'} \]

4) Sensitivity enhancement & decoupling
 \[d_m = \text{'gyy' (or 'yny')} \]